## Solution
- Find the prefix sum. scan for mins and maxes, and find the maximum min-max pair (max must come after min, can be done with one scan).
## Problem
### Problem Description
Given an integer array $\texttt{nums}$, find the subarray with the largest sum, and return its sum.
#### Example 1
- **Input:** $\texttt{nums} = [-2, 1, -3, 4, -1, 2, 1, -5, 4]$
- **Output:** $6$
- **Explanation:** The subarray $[4, -1, 2, 1]$ has the largest sum $6$.
#### Example 2
- **Input:** $\texttt{nums} = [1]$
- **Output:** $1$
- **Explanation:** The subarray $[1]$ has the largest sum $1$.
#### Example 3
- **Input:** $\texttt{nums} = [5, 4, -1, 7, 8]$
- **Output:** $23$
- **Explanation:** The subarray $[5, 4, -1, 7, 8]$ has the largest sum $23$.
### Constraints
- $1 \leq \texttt{nums.length} \leq 10^5$
- $-10^4 \leq \texttt{nums}[i] \leq 10^4$
### Follow Up
If you have figured out the $O(n)$ solution, try coding another solution using the divide and conquer approach, which is more subtle.