## Solution
- $\texttt{dp}[i][j]$ 表示到 $(i,j)$ 的最便宜的价格,对于第一行和第一列其实都是可以固定计算的,之后就可以根据比较行 / 列进行计算。
- 与 [[LeetCode 0062 - Unique Paths]] 和 [[LeetCode 0063 - Unique Paths II]] 相似。
## Problem
### Problem Statement
Given a $m \times n$ grid filled with non-negative numbers, find a path from top left to bottom right, which minimises the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
### Examples
#### Example 1
**Input:** $\texttt{grid} = [[1,3,1],[1,5,1],[4,2,1]]$
**Output:** 7
**Explanation:** Because the path $1 \rightarrow 3 \rightarrow 1 \rightarrow 1 \rightarrow 1$ minimises the sum.
#### Example 2
**Input:** $\texttt{grid} = [[1,2,3],[4,5,6]]$
**Output:** 12
### Constraints
- $m == \operatorname{grid.length}$
- $n == \operatorname{grid}[i].\operatorname{length}$
- $1 \leq m, n \leq 200$
- $0 \leq \operatorname{grid}[i][j] \leq 200$