Created At: [[2024-11-11]]
## Basics
$
e^{i x} = \cos(x) + i\cdot \sin(x),
$
where $e$ is the base of the natural logarithm.
Notably, when $x = \pi$, we have:
$
\begin{aligned}
e^{i\pi} &= \cos(\pi) + i\sin(\pi) \\
&= -1 + i \times 0 \\
&= -1,
\end{aligned}
$
or, as commonly put, $e^{i\pi} + 1= 0$. This is the **Euler's Identity**.